(Reblogged from klappersacks)
(Reblogged from women-in-science)


Interactive map of human genetic history

A global map detailing the genetic histories of 95 different populations across the world, showing likely genetic impacts of European colonialism, the Arab slave trade, the Mongol Empire and European traders near the Silk Road mixing with people in China, has been revealed for the first time.

The interactive map, produced by researchers from Oxford University and UCL (University College London), details the histories of genetic mixing between each of the 95 populations across Europe, Africa, Asia and South America spanning the last four millennia.

The study, published this week in Science, simultaneously identifies, dates and characterises genetic mixing between populations. To do this, the researchers developed sophisticated statistical methods to analyse the DNA of 1490 individuals in 95 populations around the world. The work was chiefly funded by the Wellcome Trust and Royal Society.

Read more

(Reblogged from science-junkie)


We often think of raindrops as spherical or tear-shaped, but, in reality, a falling droplet’s shape can be much more complicated. Large drops are likely to break up into smaller droplets before reaching the ground. This process is shown in the collage above. The initially spherical drops on the left are exposed to a continuous horizontal jet of air, similar to the situation they would experience if falling at terminal velocity. The drops first flatten into a pancake, then billow into a shape called a bag. The bags consists of a thin liquid sheet with a thicker rim of fluid around the edge. Like a soap bubble, a bag’s surface sheet ruptures quickly, producing a spray of fine droplets as surface tension pulls the damaged sheet apart. The thicker rim survives slightly longer until the Plateau-Rayleigh instability breaks it into droplets as well. (Image credit: V. Kulkarni and P. Sojka)

(Reblogged from fuckyeahfluiddynamics)
(Reblogged from georgetakei)


Fibonacci you crazy bastard….

As seen in the solar system (by no ridiculous coincidence), Earth orbits the Sun 8 times in the same period that Venus orbits the Sun 13 times! Drawing a line between Earth & Venus every week results in a spectacular FIVE side symmetry!!

Lets bring up those Fibonacci numbers again: 1, 1, 2, 3, 5, 8, 13, 21, 34..

So if we imagine planets with Fibonacci orbits, do they create Fibonacci symmetries?!

You bet!! Depicted here is a:

  • 2 sided symmetry (5 orbits x 3 orbits)
  • 3 sided symmetry (8 orbits x 5 orbits)
  • sided symmetry (13 orbits x 8 orbits) - like Earth & Venus
  • sided symmetry (21 orbits x 13 orbits)

I wonder if relationships like this exist somewhere in the universe….

Read the Book    |    Follow    |    Hi-Res    -2-    -3-    -5-    -8-

(Reblogged from visualizingmath)


Untitled by honeybeejoyce

(Reblogged from troubleinsalem)

An oddball day calls for re-mastered Sting songs played with an orchestra.

(Source: Spotify)



Neil’s words from the last episode of “Cosmos: A Spacetime Odyssey”


(Reblogged from jtotheizzoe)
Spend an hour watching the clouds roll overhead and no two of them will be the same. The complexity and dynamic motion of turbulence make these flows fascinating, even mesmerizing, to watch. Humans are a pattern-seeking species. We like to seek order in apparent chaos, and this, perhaps, is what makes turbulence such a captivating subject for scientists and artists alike.

Nicole Sharp, “The Beautiful Unpredictability of Coffee, Clouds, and Fire”

Something a little different today. I have a guest post over at Nautilus about looking for patterns in turbulence. Go check it out!

(via fuckyeahfluiddynamics)

(Reblogged from fuckyeahfluiddynamics)